YM1604C

LCD Module User Manual

Dalian Good Display Co., Ltd.

Tel: (86)- 411-84619565 Fax: (86)- 411-84619585 WebSite: http://www.good-lcd.com

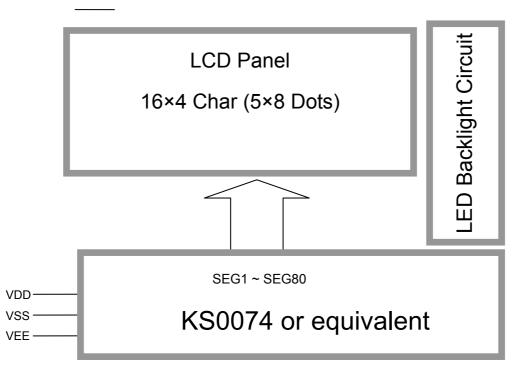
REV Descriptions

Release Date

0.1	Prelimiay release	2008-03-15

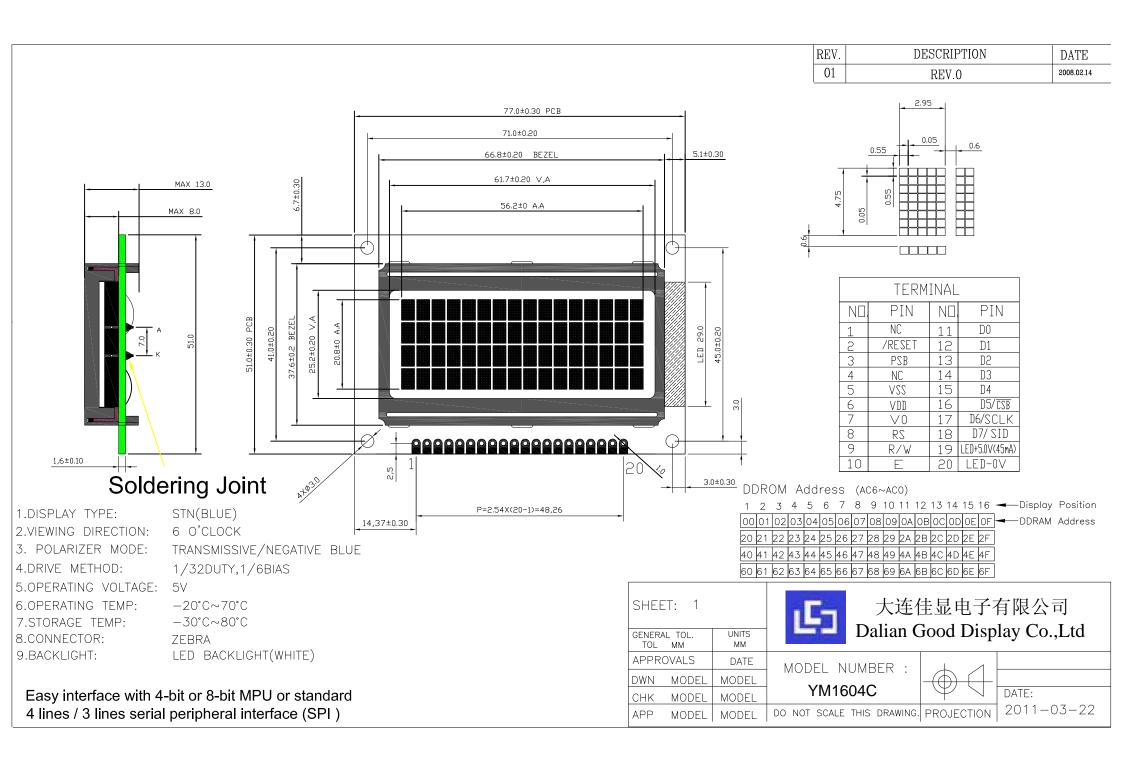
page:1 of 1 7

Table of Content


1. Basic Specifications
1.1 Display and Mechanical Specifications
1.2 Block Diagram
1.3 Terminal Functions
1.4 Mechanical Drawing
2. Absolute Maximum Ratings
3. Electrical Characteristics
3.1 DC Characteristics
3.2 AC Characteristics
4 Function Description
4.1 System Interface
4.2 Busy Flat10
4.3 Adjusting the display contrast
4.4 Display Memory Map11
4.5 Instruction Description
5 Design and Handling Precaution15

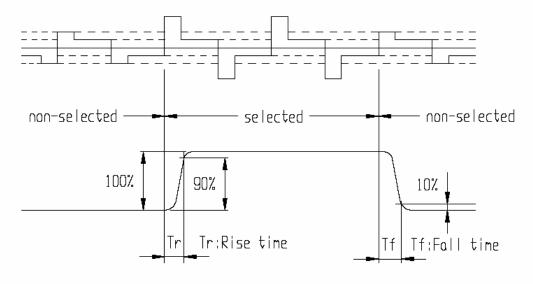
1.0 Basic Specification

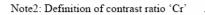
1.1 Display and Mechanical Specification


ITEM	STANDARD VALUE	UNIT
Display Type	16 Characters X 4 Lines	
LCD Type	Blue STN/ Tran missive/Positive	
LCD Duty	1/32 Duty	
LCD Bias	1/6 Bias	
Viewing Direction	6:00	
Backlight Type	Edge LED Backlight with white color	
Interface	6800/8080 series or Serial Interface	
Driver IC	RW1067	
Module Dimension	77.0(L)×51.0(W) ×13.0(H) (MAX)	mm
Visual Area	61.70(L) ×25.20(W)	mm
Dot size	0.55 ×0.55	mm
Dot Pitch	0.60 ×0.60	mm

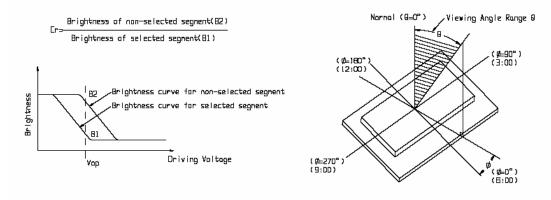
1.2 Block Diagram

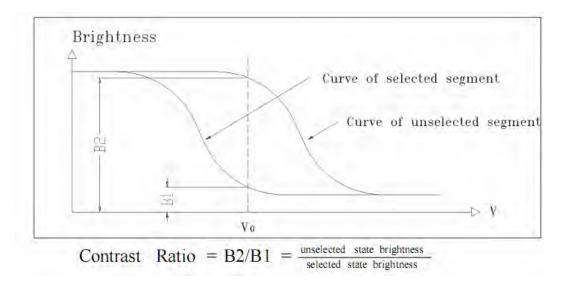
1.3 Terminal Functions


Pin Num	Pin Name	Full Name	I/O	Descriptions						
1	NC			No connection, leave open						
2	/RESET	Reset Pin	Input	Initialized to Low						
3	PSB	Interface mode	Input	Select Interface mode with the MPU.						
U	1 00	selection	mpat	When PSB="Low": Serial mode,						
		0010011011		When PSB="High":4-bit/8-bit bus mode.						
4	NC			No connection, leave open						
5	VSS		Power	Negative Power Supply, Ground(0V)						
6	VDD		Power	Positive Power Supply						
7	V0		Power	LCD contrast reference supply						
8	RS	Register select	Input	When bus mode, used as register selection input. When RS="High", Data register is selected. When RS="Low",Instruction registeris selected.						
9	R/W	Read/Write	Input	In bus mode, used as read/write selection input. When RW="High", read operation. When RW="Low", write operation.						
10	E	Read/Write Enable	Input	In bus mode, used as read/write enable signal.						
11	D0	Data bus 0 bit	Input	In 8-bit bus mode, used as low order bi-directional						
12	D1	Data bus 1 bit	Output	data bus. During 4-bit bus mode or serial mode,						
13	D2	Data bus 2 bit		open these pins.						
14	D3	Data bus 3 bit								
15	D4	Data bus 4 bit	Input Output	In 8-bit bus mode, used as high order bi-directional data bus. In case of 4-bit bus mode, used as both high and low order.						
16	D5(/CSB)	Data bus 5 bit / Chip select	Input Output	In 8-bit bus mode, used as high order bi-directional data bus. In case of 4-bit bus mode, used as both high and low order. In serial mode, used as chip selection input. When CSB = "Low", selected When CSB = "High", not selected. (Low access enable)						
17	D6(SCLK)	Data bus 6 bit /Serial clock	Input Output	In 8-bit bus mode, used as high order bi-directional data bus. In case of 4-bit bus mode, used as both high and low order. In serial mode, used as serial clock input pin.						
18	D7(SID)	Data bus 7 bit /Serial input data	Output	In 8-bit bus mode, used as high order bi-directional data bus. In case of 4-bit bus mode, used as both high and low order. DB7 used for Busy Flag output. In serial mode, used for data input pin.						
19	LED+		Power	Backlight positive supply						
20	LED-		Power	Backlight negative supply						



Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks	Note
Response time	Tr			140		ms		1
	Tf			133		ms		1
Contrast ratio	Cr			5.1				2
			41			deg	Ø = 90°	3
Viewing angle range	θ	$Cr \ge 2$	38			deg	Ø = 270°	3
			32			deg	$\emptyset = 0^{\circ}$	3
			19			deg	Ø = 180°	3


■ ELECTRO-OPTICAL CHARACTERISTICS (Vop = 4.5V, Ta = 25°C)


Note1: Definition of response time.

Note3: Definition of viewing angle range ' θ '.

2. Absolute Maximum Ratings

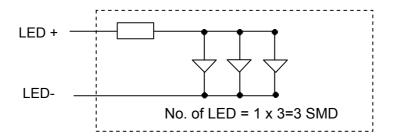
Items	Symbol	Min	Max.	Unit	Condition
Supply Voltage	Vdd	0	+7.0	V	Vss=0V
Input Voltage	Vin	0	Vdd	V	Vss=0V
Operating Temperature	Тор	0	+50	°C	No Condensation
Storage Temperature	Тѕт	-20	+70	°C	No Condensation

Cautions:

Any stresses exceeding the Absolute Maximum Ratings may cause substantial damage to the device Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability

3. Electrical Characteristics

3.1 DC Characteristics


						VSS=0V,VDD=3.3V TOP=25°C
Items	Symbol	MIN	TYP.	MAX.	Unit	Condition/Application pin
Operating Voltage	VDD	2.7	5.0	5.5	V	-
Input High Voltage	V1H	0.7Vdd		Vdd	-	-
Input Low Voltage	VIL	-0.3	-	0.2Vdd		VDD=2.7 - 3.0
Input Low Voltage		-0.3	-	0.6		VDD= 3.0 - 5.5
Output High Voltage	Vон	0.75Vdd	-	-	V	Іон=-0.1m A,DB0∼DB7
Output Low Voltage	Vol	-	-	0.2Vdd	V	lo∟=-0.1m A,DB0∼DB7
Operating Current	lod	-	0.15	0.3	mA	Internal oscillation or e xternal clock. (VDD=3.0v, fosc=270kHz

3.2 LED Backlight Circuit Characteristics

Items	Symbol	MIN	TYP.	MAX.	Unit	Application pin		
Forward Voltage	Vfled+	-	3.0	-	V	LED+		
Forward Current If _{LED+}		-	45	60	mA	LED+		

Cautions:

Exceeding the recommended driving current could cause substantial damage to the backlight and shorten its lifetime.

Mode	Items	Symbol	MIN	TYP.	MAX.	Unit			
	E cycle time	tc,	500	-	-				
	E rise/fall time	tr , tf	-	-	20				
Write mode	E pulse width (high,low)	tw	230	-	-				
(Refer to figure A)	R/W and RS setup time	Tsu1	40	-	-	ns			
	R/W and RS hold time	th1	10	-	-				
	Data setup time	tsu2	60	-	-				
	Data hold time	th2	10	-	-				
	E cycle time	tc,	500	-	-				
	E rise/fall time	tr , tf	-	-	20				
Read mode	E pulse width (high,low)	tw	230	-	-				
(Refer to figure B)	R/W and RS setup time	tsu	40	-	-	ns			
	R/W and RS hold time	th	10	-	-				
	Data output delay time	tD	-	-	160				
	Data hold time	tDH	5	-	-				
	Serial clock cycle time	tc	0.5	-	20	us			
	Serial clock rise / fall time	tr,tf	-	-	50				
	Serial clock width (high , low)	tw	200	-	-				
Serial interface mode	Chip select setup time	tsu1	60	-	-				
	Chip select hold time	th1	20	-	-				
(Refer to figure C)	Serial input data setup time	tsu2	100	-	-	ns			
	Serial input data hold time	th2	th2 100						
	Serial output data delay time	tD	-	-	160				
	Serial output data hold time	tDH	5	-	-				

3.3 AC Characteristics (VDD= 4.5 to 5.5V ,Ta= -30 to 85 $^\circ \rm C$)

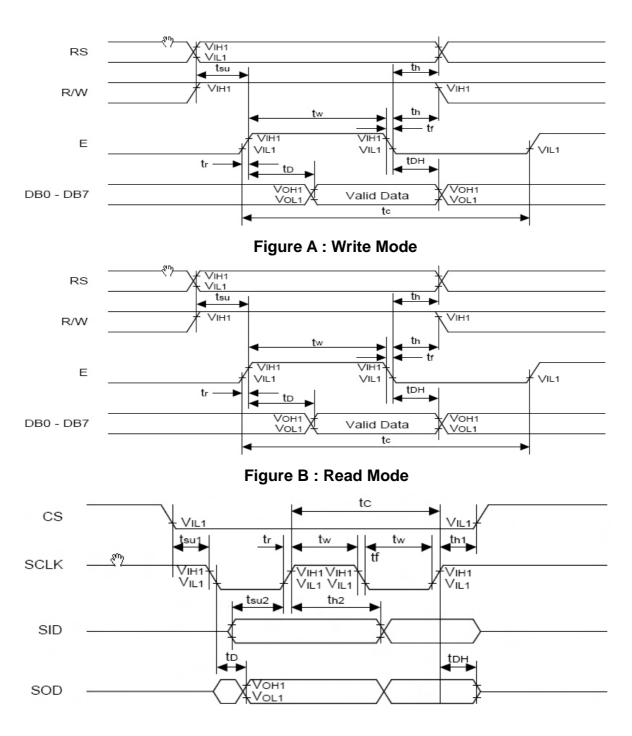


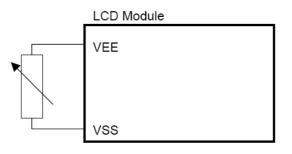
Figure C : Serial interface mode

4. Function Description

4.1 System Interface

KS0074 has all three kinds interface type with MPU: serial, 4-bit bus and 8-bit bus. Serial and bus (4-bit/8-bit) is selected by IM input, and 4-bit bus and 8-bit bus is selected by DL bit in the instruction register. During read or write operation, two 8-bit registers are used. one is data register (DR), the other is instruction register (IR). The data register (DR) is used as temporary data storage place for being written into or r ead from DDRAM/CGRAM/SEGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically.

So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/SEGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/SEGRAM automatically. The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data. To select register, use RS/CS input pin in 4-bit/8-bit bus mode (IM = "High") or RS bit in serial mode (IM = "Low").


RS	RW	Operation
0	0	Instruction write operation (MPU writes Instruction code into IR)
0	1	Read busy flag (DB7) and address counter (DB0 - DB6)
1	0	Data write operation (MPU writes data into DR)
1	1	Data read operation (MPU reads data from DR)

4.2 Busy Flag

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 Before executing the next instruction, be sure that BF is not High.

4.3 Adjusting the display contrast

A Variable-Resistor must be connected to the LCD module for providing a reference supply to VEE. Adjusting the VR will result the change of LCD display contrast. The recommended value of VR is 5k Ohm.

4.4 Display memory map

There are two main memory-areas in the LCD module for display.

- Character Generator RAM (CGRAM)
- Displ ay Data RAM (DDRAM)

4.4.1 Display Data Ram (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number. (Refer to Figure 1.)

MSB						LSB
AC6	AC5	AC4	AC3	AC2	AC1	AC0

Figure 1. DDRAM Address

5-dot 4-line Display

In case of 4-line display with 5-dot font, the address range of DDARM is 00H-13H, 20H-33H, 40H-53H, 60H-73H. (refer to Figure 2)

						- N/												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	 Display Position
	COM1 COM8	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	DDRAM Address
	CO <u>M9</u> COM16	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	
	COM <u>17</u> COM24	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	
(COM <u>25</u> COM32	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	
		S6A0074							SEG80									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	COM1 COM8	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	
	CO <u>M9</u> COM16	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30	
	COM <u>17</u> COM24	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	
	COM <u>25</u> COM32	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	70	
(5010152																	

(After Shift Left)

	1	2													15	
COM1 COM8	13	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E
COM9 COM16																
COM17 COM24																
COM24 COM25 COM32																
COM32	73	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E
							A fto	- Ch		abt)						

(After Shift Right)

Figure 2 4-Line X 16 ch .Display (5-dot Font Width)

4.4.2 Character Generator Ram (CGRAM)

CGRAM has up to 5 X 8 dots 8 characters. By writing font data to CGRAM, user defined character can be used(refer to Figure 3).

5X8 dots Character Pattern

Figure 3. Relationship Between Character Code (DDRAM) and Character Pattern (CGRAM)

Character Code (DDRAM data)								CGF	RAM	Add	ress				С	GRA	MDa	ata			Pattern	
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	Α3	A2	A1	A0	P7	P6	Ρ5	Ρ4	Р3	P2	P 1	P0	Number
0	0	0	0	х	0	0	0	0	0	0	0	0	0	B1	B0	х	0	1	1	1	0	Pattern 1
											0	0	1				1	0	0	0	1	
											0	1	0				1	0	0	0	1	
									:		0	1	1				1	1	1	1	1	
											1	0	0				1	0	0	0	1	
											1	0	1				1	0	0	0	1	
											1	1	0				1	0	0	0	1	
											1	1	1				0	0	0	0	0	
																		-				
0	0	0	0	х	1	1	1	1	1	1	0	0	0	B1	B0	х	1	0	0	0	1	Pattern 8
											0	0	1				1	0	0	0	1	
											0	1	0				1	0	0	0	1	
									:		0	1	1		:		1	1	1	1	1	
											1	0	0				1	0	0	0	1	
									:		1	0	1		:		1	0	0	0	1	
											1	1	0				1	0	0	0	1	
											1	1	1				0	0	0	0	0	

4.5 Instruction Description (IE = "HIGH")

Table 1

Instruction RE					Ins	tructi	on Co	ode				Description	Executi on Time
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(fosc = 270kHz)
Function set	0	0	0	0	0	1	DL	N	RE (0)	DH	REV	Set interface data length (DL = "1": 8-bit, DL = "0": 4-bit), numbers of display line when NW = "0", (N = "1": 2-line, N = "0" : 1-line), extension register, RE("0"), shift/scroll enable DH = "1": display shift enable DH = "0": dot scroll enable. reverse bit REV = "1": reverse display, REV = "0": normal display.	39µs
	1	0	0	0	0	1	DL	N	RE (1)	BE	0	Set DL, N, RE("1") and CGRAM/SEGRAM blink enable (BE) BE = "1/0": CGRAM/SEGRAM blink enable/disable	39µs
Set CGRAM address	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs
Set SEGRAM address	1	0	0	0	1	х	х	AC3	AC2	AC1	AC0	Set SEGRAM address in address counter.	39µs
Set DDRAM address	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs
Set scroll quantity	1	0	0	1	х	QC5	QC4	QC3	QC2	QC1	QCD	Set the quantity of horizontal dot scroll.	39µs
Read busy flag and address	x	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Can be known whether during internal operation or not by reading BF. The contents of address counter can also be read. BF = "1": busy state, BF = "0": ready state.	0μs
Write data	х	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM / CGRAM / SEGRAM).	43µs
Read data	Х	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM / CGRAM / SEGRAM).	43µs

page:12 of 17

Table 1 Continued

Instruction	RE				Ins	structi	on Co	de				Description	Executi on Time
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(fosc = 270kHz)
Clear display	х	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Return home	0	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return current to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Power down mode	1	0	0	0	0	0	0	0	0	1	PD	Set power down mode bit. PD = "1": power down mode set, PD = "0": power down mode disable	39µs
Entry mode set	0	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction. I/D = "1": increment, I/D = "0": decrement and display shift enable bit. S = "1": make display shift of the enabled lines by the DS4 - DS1 bits in the shift enable instruction. S = "0": display shift disable	39µs
	1	0	0	0	0	0	0	0	1	1	B/D	Segment bi-direction function. BID = "0": Seg1 \rightarrow Seg80, BID = "1": Seg80 \rightarrow Seg1.	
Display ON/OFF control	0	0	0	0	0	0	0	1	D	С	В	Set display/cursor/blink on/off D = "1" : display on, D = "0" : display off, C = "1" : cursor on, C = "0" : cursor off, B = "1" : blink on, B = "0" : blink off.	39µs

Instruction	RE				Ins	tructi	on Co	de				Description	Executi on Time
		RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(fosc = 270kHz)
Extended function set	1	0	0	0	0	0	0	1	FW	B/W	NW	Assign font width, black/white inverting of cursor, and 4-line display mode control bit. FW = "1": 6-dot font width, FW = "0": 5-dot font width, B/W = "1": black/white inverting of cursor enable, B/W = "0": black/white inverting of cursor disable NW = "1": 4-line display mode, NW = "0": 1-line or 2-line display mode.	39µs
Cursor or display shift	0	0	0	0	0	0	1	S/C	R/L	x	x	Cursor or display shift. S/C = "1" : display shift, S/C = "0" : cursor shift, R/L = "1" : shift to right, R/L = "0" : shift to left.	39µs
Shift enable	1	0	0	0	0	0	1	DS4	DS3	DS2	DS1	(when DH = "1") Determine the line for display shift DS1 = "1/0": 1st line display shift enable/disable DS2 = "1/0": 2nd line display shift enable/disable DS3 = "1/0": 3rd line display shift enable/disable DS4 = "1/0": 4th line display shift enable/disable.	39µs
Scroll enable	1	0	0	0	0	0	1	HS4	HS3	HS2	HS1	(when DH = "0") Determine the line for horizontal smooth scroll. HS1 = "1/0": 1st line dot scroll enable/disable HS2 = "1/0": 2nd line dot scroll enable/disable HS3 = "1/0": 3rd line dot scroll enable/disable HS4 = "1/0": 4th line dot scroll enable/disable.	39µs

Table 3

NOTE:

During internal operation, Busy Flag (DB7) is read high. Busy Flag check must be proceeded the next instruction. Busy flag check must be proceeded the next instruction.

When an MPU program with Busy Flag (DB7) checking is made, 1/2 Fosc (is necessary) for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".

Content of Reliability Test

		Environmental Test		_
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High temperature	Endurance test applying the high storage	50 °C	
	storage	temperature for a long time.	100hrs	
2	Low temperature	Endurance test applying the low storage	0°C	
	storage	temperature for a long time.	100hrs	
3	High temperature	Endurance test applying the electric stress	40 °C	
	operation	(Voltage & Current) and the thermal stress to the element for a long time.	200 hrs	
4	Low temperature	Endurance test applying the electric stress	10°C	
	operation	under low temperature for a long time.	200 hrs	
5	High temperature /	Endurance test applying the high temperature	50°C, 90 %RH	MIL-202E-
	Humidity storage	and high humidity storage for a long time.	96 hrs	103B
				JIS-C5023
6	High temperature /	Endurance test applying the electric stress	40°C, 90 %RH	MIL-202E-
	Humidity operation	(Voltage & Current) and temperature /	96 hrs	103B
		humidity stress to the element for a long time.		JIS-C5023
7	Temperature cycle	Endurance test applying the low and high	0°C / 50°C	
		temperature cycle.	10 cycles	
		$ \overset{0^{\circ}\mathrm{C}}{30\mathrm{min}} \xleftarrow{25^{\circ}\mathrm{C}}{5\mathrm{min}} \xleftarrow{50^{\circ}\mathrm{C}}{30\mathrm{min}} $		
		1 cycle		
		Mechanical Test		1
8	Vibration test	Endurance test applying the vibration during	$10~22$ Hz \rightarrow	MIL-202E-
		transportation and using.	1.5mmp-p	201A
			$22\sim500$ Hz $\rightarrow 1.5$ G	JIS-C5025
			Total 0.5hrs	JIS-C7022- A-10
9	Shock test	Constructional and mechanical endurance test	50G half sign	
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation	50G half sign wave 11 msedc	MIL-202E-
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G half sign wave 11 msedc 3 times of each	
9	Shock test		wave 11 msedc	MIL-202E-
_		applying the shock during transportation.	wave 11 msedc 3 times of each	MIL-202E-
_	Atmospheric	applying the shock during transportation. Endurance test applying the atmospheric	wave 11 msedc 3 times of each direction	MIL-202E- 213B
_		applying the shock during transportation. Endurance test applying the atmospheric pressure during transportation by air.	wave 11 msedc 3 times of each direction 115 mbar	MIL-202E- 213B MIL-202E-
10	Atmospheric pressure test	applying the shock during transportation. Endurance test applying the atmospheric pressure during transportation by air. Others	wave 11 msedc 3 times of each direction 115 mbar 40 hrs	MIL-202E- 213B MIL-202E- 105C
9 10 11	Atmospheric	applying the shock during transportation. Endurance test applying the atmospheric pressure during transportation by air. Others Endurance test applying the electric stress to	wave 11 msedc 3 times of each direction 115 mbar 40 hrs VS=600V, RS=1.5	MIL-202E- 213B MIL-202E- 105C MIL-883B-
10	Atmospheric pressure test	applying the shock during transportation. Endurance test applying the atmospheric pressure during transportation by air. Others	wave 11 msedc 3 times of each direction 115 mbar 40 hrs	MIL-202E- 213B MIL-202E- 105C

*** Supply voltage for logic system = VDD. Supply voltage for LCD system = Operating voltage at 25°C.

5. Design and Handling Precaution

1.0 The LCD panel is made by glass. Any mechanical shock (eg. dropp ing form high place) will damage the LCD module.

- 2.0 Do not add excessive force on the surface of the display , which may cause the Display color change abnormally.
- 3.0 The polarizer on the LCD is easily get scratched. If possible, do not remove the LCD protective film until the last step of installation.
- 4.0 Never attempt to disassemble or rework the LCD module.
- 5.0 Only Cle an the LCD with Is opropyl Alcohol or Ethyl Alcohol. Other solvents (eg. water) may damage the LCD.
- 6.0 When mounting the LCD module, make sure that it is free form twisting, warping and distortion.
- 7.0 Ensure to provide enough space (with cushion) between case and LCD panel to prevent external force adding on it, or it may cause damage to the LCD or degrade the display result.
- 8.0 Only hold the LCD module by its side. Never hold LCD module by adds force on the heat seal or TAB.
- 9.0 Never add force to component of the LCD module. It may cause invisible damage or degrade of the reliability.
- 10.0 LCD module could be easily damaged by static electricity. Be careful to maintain an optimum anti-static work environment to protect the LCD module.
- 11.0 When peeling off the protective film from LCD, static charge may cause abnormal display pattern. It is normal and will resume to normal in a short while.
- 12.0 Take care and prevent get hurt by the LCD panel sharp edge.
- 13.0 Never operate the LCD module exceed the absolute maximum ratings.
- 14.0 Keep the signal line as short as possible to prevent noisy signal applying to LCD module.
- 15.0 Never apply signal to the LCD module without power supply.
- 16.0 IC chip (eg. TAB or COG) is sensitive to the light. Strong lighting environment could Possibly cause malfunction. Light sealing structure casing is recommend.
- 17.0 LCD module reliability may be reduced by temperature shock.
- 18.0 When storing the LCD module, avoid exposure to the direct sunlight, high h umidity, high temperature or low temperature. They may damage or degrade the LCD module